Cretaceous Park

Brachiosaurus, frå Chicago

Jurrasic Park (1993) er ein av dei store science fiction-filmklassikarane gjennom tidene. Gjennom ein kombinasjon av tidleg dataanimasjon og uvanleg godt lagde fysiske modellar forma denne filmen synet ein heil generasjon hadde på dinosaurar, i tillegg til å fortelja ein spanande historie fundert i relativt plausibel vitskapsspekulering. Heilt grunnleggande går plottet ut på å utvinna DNA frå mageinnhaldet til fossile blodsugande insekt, for så å bruka dette til å klona fortidsdinosaurar.

Det er i utgongspunktet lite prinsippielt i vegen med dette. Riktignok vert DNA notorisk vanskeleg å utvinna og lesa jo eldre det vert; men sjølv om det eldste genomet ein har lukkast med å sekvensera «berre» er 700 000 år gamalt er det teoretisk mogleg å få tilsvarande datamengder tilbake til 10 millionar år sidan gitt at vevet har vore lagra kaldt nok (Millar & Lambert 2013). For einskildgen kan ein koma vesentleg lenger tilbake i tid – dei eldste sekvensane ein har fått kartlagt er aminosyresekvensar frå beinproteina collagen α1 og α2 hjå sjølvaste Tyrannosaurus rex (Organ et al. 2008).

Tyrannosaurus rex.

Å sekvensera genmateriale frå insektfossil slik ein gjer i Jurassic Park er nok diverre anten umogleg eller særs langt fram i tid. Dei best bevarte insektfossila kjem frå rav, men det er nok diverre tvilsomt om det framleis kan finnest DNA i desse. Det blei gjord fleire lovande einskild-studium tidleg på 90-talet, men dei fleste av resultata frå desse studia har vist seg å berre vera kontaminasjonar: i staden for å få sekvensar frå dei utdøydde ravdyra las forskarane av DNA frå sopp og andre moderne organismar som ureina prøvene (Austin et al. 1997). Då dette blei klart gav mange forskarar opp å utvinna DNA frå rav, og det finnest særs få moderne studium som i det heile teke har forsøkt. Det næraste var då ravforskaren David Penney saman med nokre kollegar prøvde å sekvensera dyr i kopal, den delvis forsteina sevja som er forløparen til rav. Desse resultata er like nedslåande som dei frå seint 90-tal (Penney et al. 2013)…

Eit anna problem som i mine augo er minst like alvorleg er det å finna dei riktige blodsugande insekta å henta ut DNA frå. Dersom ein ein dag klarar å gjera alle verdas molekylærbiologar til skamme (eg kryssar fingrane) og faktisk klarar å bruka insektmageinnhald til å få ut gode genomsekvensar av store virveldyr, må ein framleis finna blodsugarar å henta mageinnhaldet frå. Her er det heldigvis vesentleg færre problem enn det ein har på molekylærlaben – fossil av blodsugande mygg-artar er kjend frå fleire ulike ravavsetningar frå heile verda.

Stikkemygg, som denne gulfebermyggen Aedes aegypti, har røter langt attende i tid.

Dei eldste fossilførande ravlaga er frå Libanon og er datert til å vera ca 120 millionar år gamle, det vil seie frå tidleg i krittida. Det er òg her ein finn dei eldste representantane for fleire blodsugande insekt-grupper, m.a. sviknott (Ceratopogonidae) og sandmygg (Psychodidae: Phlebotominae). Familien me normalt tenkjer på som stikkemygg, Culicidae, er ikkje mykje yngre – dei eldste ravfossila av desse finnest i 90-100 millionar år gamal burmesiske lag. I tillegg til Libanon og Burma finnest det rav som er gamal nok til å ha dinosaur-parasittar i seg i Frankrike, Spania, Canada, New Jersey og Sibir; alle frå tidleg i eller midten av krittida.

Kva for dyr dei blodsugande insekta beita på kan ein enno berre spekulera i, men det bør ikkje vera kontroversielt å gå ut frå at dei først og fremst nyttegjorde seg av dyr som var vanlege i sine lokale miljø. For å få ein peikepinn på kva slags organismar dette kan ha vore, må ein først sjå på økologien til rav-avsetningane dei kjem frå. Rav er forsteina kvae frå bartre eller i nokre tilfelle lauvtre, og blei difor stort sett danna i skog: Når ein finn store mengder 120 millionar år gamal gamal rav i Libanon i dag kan ein difor gå ut frå at det vaks mykje skog der for 120 millionar år sidan…

Sumpskog i Louisiana, ikkje så veldig ulikt habitatet ein tenkjer seg at Tyrannosaurus rex levde i for 65 millionar år sidan.

Dette er det største problemet med Jurassic Park for min del. Den mest framtredande dinosauren i filmane, dei flokklevande jegarane Velociraptor, levde i ørkenområde der det rett og slett ikkje var nok tre til å danna rav. Tyrannosaurus rex på si side levde i subtropisk sumpskog som ein tenkjer seg ikkje var så veldig ulik den som finnest i Mississippi-deltaet i dag, og har såleis noko betre sjansar. Diverre kjenner ein ikkje til om trea i denne skogen produserte rav i det heile teke, og ein kan difor ikkje vita korleis insekta som saug Tyrannosaurblod såg ut…

Det finnest derimot mange dinosaurar ein derimot HAR gode sjansar til å finna blod frå i fossile blodsugarar, og dei fleste hovudgruppene er representerte. Ein av dei rikaste fossilrekkene er kjend frå krittida i Frankrike, der ein fann rovdinosaurane Genusaurus og Erectopus, planteetaren Iguanodon og fleire uidentifiserte artar av ankylosaurar og sauropodar (Allain & Superbiola 2003). Ein liknande fauna fantest i Spania, og er særleg vel bevart i Las Hoyas-formasjonen. Her fantest det òg flygeøgler og ein rik fauna av tidlege fuglar.

Albertosaurus var mykje mindre enn Tyrannosaurus, men eg trur eg hadde vorte like uroleg av å møta dei begge.

Dei mest spanande dyra i nokon kjend ravskog kom nok frå Canada. Den kanadiske raven er 70 millionar år gamal, og er funnen i lag der ein òg har ein rik fauna av store dinosaurar. Mest imponerande er Albertosaurus, ein opp til 10 meter lang jegar i tyrannosaurfamilien. Vidare fantest det her horndinosaurar i slektene Eotriceratops og Pachyrhinosaurus, panser-øgla Edmontonia og andeøglene Edmontosaurus, Anodontosaurus, Saurolophus og Hypacrosaurus (Larson et al. 2010).

Om ein løyser dei tekniske problema med DNA-ekstrahering, sekvensering, rekonstruksjon av genom, kloning og framdyrking vil ein såleis potensielt ha ei rik samling av imponerande fortidsdyr å visa til. Ein vil ikkje kunne gjenskapa Jurassic Park fullstendig, men ein kan laga noko som er ganske likt. Den ikoniske innflygingsscena der hovudpersonane først møter sin første, enorme beitande langhals er òg innanfor rekkevidde, reint biogeografisk – det blei nyleg funne Brachiosauridae-tenner i Libanon (Buffetaut et al. 2006)…

Det er difor ingenting å nøla med. Dei av mine lesarar som er molekylærbiologar oppmodast med dette til å legga frå seg kva det enn er dei driv med og vekka sine indre fem år gamle dinosaurnerdar. Å få nobelprisen vil vera uendeleg mykje kulare om du kjem til nobelprisutdelinga ridande på ein ni meter lang Albertosaurus

Referansar:
– Allain, R., & Superbiola, X.P. 2003. Dinosaurs of France. Comptes Rendus Palevol 2, 27-44
– Austin, J.J., Ross, A.J., Smith, A.B., Fortey, R.A. & Thomas, R.H. 1997. Problems of reproducibility – does geologically ancient DNA survive in amber-preserved insects? Proceedings of the Royal Society of London B 264, 467-474
– Buffetaut, E., Azar, D., Nél, A., Ziadé, K. & Acra, A. First nonavian dinosaur from Lebanon: a brachiosaurid sauropod from the Lower Cretaceous of the Jezzine District. Naturwissenschaften 93, 440-443
– Evenhuis, N.L. 2002. Catalogue of the fossil flies of the world (Insecta: Diptera). Web version. Tilgjengeleg frå http://hbs.bishopmuseum.org/fossilcat/index.shtml
– Larson, D.W., Brinkman, D.B. & Bell, P.R. 2010. Faunal assemblages from the upper Horseshoe Canyon formation, an early Maastrichtian cool-climate assemblage from Alberta, with special reference to the Albertosaurus sarcophagus bonebed. Canadian Journal of Earth Sciences 47, 1159-1181
– Millar, C.D. & Lambert, D.M. 2013. Ancient DNA: Towards a million-year-old genome. Nature 499, 34-35
– Organ, C.L., Schweitzer, M.H., Zheng, W., Freimark, L.M., Cantley, L.C. & Asara, J.M. 2008. Molecular phylogenetics of Mastodon and Tyrannosaurus rex. Science 520, 499.
– Penney, D., Wadsworth, C., Fox, G., Kennedy, S.L., Preziosi, R.F. & Brown, T.A. 2013. Plos One 8, e73150. doi:10.1371/journal.pone.0073150

Kommenter innlegget